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A variational method is presented in order to determine and study linear microinstabilities 
in tokamaks. Exploiting the existence of a system of action and angular variables for trapped 
and circulating particles, a functional, extremum in the turbulent electromagnetic field, is 
analytically established and implemented in the code TORRID. The coupling of poloidal 
harmonics due to toroidal effects is investigated within the frame of a WKB formalism whose 
zeroth order is equivalent to the ballooning analysis. The essential features of the code 
TORRID are described. Curvature effects on ionic modes protiles and stability thresholds are 
presented as an example of application. 0 1990 Academic Press, Inc. 

I. INTRODUCTION 

Tokamak plasmas are getting closer and closer to thermonuclear co~d~t~o~s. 
owever, they are subject to microscopic instabilities whit cause a dramatic 

reduction of the energy confinement time below its neoclassic 
Linear theories are available for various instabilities and a iot of work has been 

done to estimate their nonlinear saturation level, corresponding spectra, and 
resulting transport across the equilibrium magnetic field. However, the actual 
mechanism of the microturbulence is still poorly understood. This is largely due to 
the large number of possible linear instabilities, e.g., electrostatic or not, involving 
or not involving trapped electrons and ions. The problem of accurately giving the 
status of all these possibilities in a given plasma is not yet completely solve 

The aim of this paper is to describe a formalism and a derived numerical code 
taking account of all the possible microinstabilities driven by the diamagnetism in 
any exact geometry and including all classes of particles. This useful tool pre 
the unstable mode structures and parameters (frequency and wave vect 
also provides the quasilinear transport coefticients. Noncompressional ( 
low frequency (smaller than the cyclotronic frequencies) modes are considered, 
those cases involving most of the instabilities relevant for anomalous transport 
investigations. Such modes are well described by a perturbed electric potential 
6U(x, t) and a perturbed potential vector 6A(x, t) parallel to the static magnetic 
field. In the next section, it is shown that a functional extremum for the unsta 
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eigenfunctions can be built within the frame of an hamiltonian formalism. A general 
expression of this functional is derived, taking account of both circulating and 
trapped particles trajectories in toroidal geometry. As it stands at this level, finding 
any mode SU, 6A is a two-dimensional problem which is hardly tractable 
numerically. However, the modes in a diamagnetic turbulence exhibit a large scale 
along the field lines and a small scale in the transverse direction and the problem 
may be reduced to one dimension through the so-called ballooning formalism. We 
use that formalism in Section III in the original form under which it has been first 
introduced [ 1, 21: the individual harmonics of each mode determined by a poloidal 
wave number are localized near the corresponding resonant surface where their 
parallel wave number vanishes and they exhibit a standard structure about that 
surface. The computation then reduces to the calculation of this latter structure. 
The corresponding variational functional is derived, discussed, and compared with 
previous works [6-91. It is shown in Section IV that the method is in fact the 
zeroth order of a WKB analysis taking into account the variations of the structures 
of the successive poloidal harmonics. This provides criteria for the validity of the 
approach, which remains numerically tractable. The numerical techniques and the 
code are described in Section V with some applications to ionic modes. 

II. PHYSICAL FEATURES OF ELECTROMAGNETIC INSTABILITIES IN TOKAMAKS 

11.1. Basic Principle 

We consider a tokamak axisymmetric equilibrium with nested magnetic surfaces 
labelled by their poloidal magnetic flux 2n’Y We define the poloidal angle 0 such 
that 

along a field line on a given magnetic surface, cp being the usual toroidal angle, and 
q(Y) the safety factor. The equilibrium magnetic field B may be derived from a 
potential vector A, 

B=rot A 

A=&(Y)W+ YVq, 
(2) 

where 2fl4.( Y) is the flux of the toroidal field through a !P magnetic surface and 
verifies 

&MY) -= -q(Y). 
dY 
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We use the coordinates system x = (!P, 0, cp) whose Jacobian is 

[vY,ve,vcp]= -JB= -$= - 

Equilibrium density and temperature for each species s are nearly functions of 
n,(Y) and T,(Y), We retain the gradients an$aY, aT,/d!P as the deviation from 
thermodynamical equilibrium which cause the microinstabi~it~es 6E(x, f), 6 
We investigate the modes derived from an electric potential bU(x, t) and a vector 
potential 6A(x, t) directed along the equilibrium field lines, 

6B = rot(bA); 6A=6A 

with an oscillatory time dependence, 

6U(x, t) = B(x) exp - iccit + cc 

&4(x, t) = A”(x) exp - iot + CC. 
66) 

The fields 8(x) and A”(x) are 2x-periodic in B and q. Since the eq~i~ibri~m is 
axisymmetric in p, a single cp Fourier harmonic can be kept so that 

U(x)=C UI(Y- !?fv,)expi(EBi-mcp) 
I 

(7) 

A”(X) = 1 A,( Y- YJ exp i(je + mcp), 

where for each e-harmonic I, a Y structure around the resonant surface 
Y = Y/(4( y”,) = -l/m) has been introduced. In the computations, those structures 
in fact will be specified by the Fourier transforms 

y perturbing the particle trajectories of each species s, the fields D(x), A(x) 
ce a current density?,(x) and a charge density pS(x) depending on o(x) 

through a linear operator. The Maxwell equations, reduced here to the A 
equation along the field lines and the electroneutraiity constraint, can be written in 
a synthetic variational form, whose functional, bilinear in 8*, d* and in 0, A is 



252 GARBET ET AL. 

where for each species s: 

The 6”, functionals are linear in 0, A” through b,, Jr. The field equations for 0, 
A” are equivalent to state that the functional is an extremum with respect to o* and 
A”*. For w  real, the power transferred by the RF field to the species s is equal to 
20 Im 9”. We will calculate 9s under the form 

The procedure is convenient because a standard expression for the functional L&,, 
is available in a resonant form (Eq. (18)), when the unperturbed particle trajectories 
are integrable. 

11.2. Unperturbed Trajectories 

Since the tokamak confinement properties are basically related to the 
integrability of the trajectories in the equilibrium held, it is fruitful to introduce a 
Hamiltonian formalism so as to compute the plasma responses fi, andJs. For given 
adiabatic magnetic moment ~(x, p) = m,u:/2B, energy H(x, p) = ;rn5vi + PB and 
momentum around the major axis M(x, p) = e, Iv+ nz,~~ R (the three basic con- 
stants of the motion), the position of a particle in the phase space (x, p) depends 
periodically on three angular variables 4,(x, p), C&(X, p), b3(x, p) varying linearly in 
time along any unperturbed trajectory. More precisely, the cyclotronic motion 
depends on a gyrophrase ~~5i = w,(H, p, M) t + $rO (ol is the time average value of 
the cyclotronic frequency o,, = - e,B/m,) while the guiding center motion ( Yy,, 
8,, cpc) is described by two slowly varying phases d2 = oZ(H, CL, M) t + &, and 
43 = %(ff> /4 Ml t + ho (410, 420, 1530 are initialization constants). The following 
equations are available from preliminary computations, either for the case where 
the parallel velocity u,, = + 2(H- pB)/m, cancels during the motion and the par- 
ticle is trapped or for the case where v,, does not vanish and the particle circulates 
around the major axis. Instead of the moment 44, a flux P(,u, H, M) will be used 
as the third constant of the motion (P can be, for instance, the time averaged value 
of Yu,). 

(i) Circulating particles. The variables &, d3 represent the phases of the 
guiding center motion around the magnetic axis and the major axis respectively and 
for given H, p, !P, 

(11) 
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where E= 1 and 4, 4, and 4 are 2n periodic functions of #2 representing the uI 
modulation due to the inhomogeneity of B and the curvature drift effects. The 
frequency w2 = dqb,/dt and the function t? are needed in what follows at zeroth order 
only with respect to the ion Larmor radius, namely, 

w,=l 
2~ d0 

Ir - o 271Jv,, 

8=/;2dqS2 ($-$ 

(12) 

where the integrand must be considered as functions of 8 or b2 along a trajectory 
specified by ,u, H, P, and sign(v,, ). At first order in Larmor radius, we then have 

w~=~q(~)o*+cod 

/e,B*) x(m,v~(l/R) +p VB) is the drift velocity due to t 

@p= .i’ ~2~(vY.v,). 
(ii) Trapped particles. The variables & and d3 are now the phases of the 

bounce motion and the precession motion around the major axis. Eq~at~~~s 
(1 I), (12) apply with E= 0 rather than E= 1. The frequency o2 = dqJ2/dt is the 
bounce frequency given by 

where [ - 610, Q,] is the bouncing 8 interval depending on p, H, P. The form 
(IS), (14) remain correct with E= 0. 

111.3. Expression of the Functional .JZ& 

The coordinates system (p, H, !P, $r, d2, d3) allows to obtain a very si 
expression of the functional within the frame of an Hamiltonian formalism. 
Wamiltonian perturbation associated with the fields n(x), A(x), 
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may be expanded as a Fourier series in dl, I&, &, 

(17) 

Solving the Vlasov equation within that frame, the functional 9$, for a particle 
species s is found to be [4, 51 

where 

n,( 9 H 
Fs(H’ ‘) = (2zm, T,( 1J7))‘/2 exp - T,(p) 

is the equilibrium distribution function on the surface Y= !P and 

o*=mT,aLogF,W, ‘y) 
s 

es aF (19) 

is the H dependent diamagnetic frequency measuring the radial gradients. 
For the low frequency turbulence considered, o - OB + o1 NW,,, only the com- 

ponents h,, , n2 for which ytr = 0 play a role. They are obtained by averaging h(x, p) 
over the cyclotron motion, an operation which, for given slow variables p, H, Y,, 

eG> (PG, is equivalent to the integration Jp (d4,/2n) @x, p). Starting from the 
expressions (7) and (8) and performing this averaging, it finally becomes 

x e,( U,(K) - q(42) -4,(K)) exP{i(BkK d2) -n2d2)L (20) 

where the arguments of the Bessel function J,, 

a,(K,cj,)= ;xV(KY+ze+mqg s I( ) 
112 

s ‘3 
and 

(21) 

(22) 

are calculated for p, H given at !P= p and 0 = .$& + e(4,); g= 1 or 0 in the 
circulating or trapped domain. The function B, represents the phase perturbations 
experienced by a particle during its motion, 

B,(K, 42) = I E d2 + K( !F-- YJ + (I+ mq( !?)) f&/5,) + mQ(f3,) + K’&b,). (23) 
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The formula (20) included in the TScC, expression (18 ) for each s 
to complete the calculation of the functional Y (9), (10). 

In a cylindrical equilibrium where 8 = C$ = p= 0, there e ts a single relevant 
number ~1~ = 1 for a given 1 component U,( Y - !.P/), A,( !P- of the field D(X), 
d(x). The toroidicity introduces & dependent functions a, 
additional relevant numbers n2 = I & 1, 1+ 2, . . . . in the circulat 
trapped domain, the relevant n2 = 0, + 1, + 2, . . . . represent the barmo~ics of the 
bounce motion involved in the response of the particles. Conversely, a given n2 
involves several components U,, AI which are then coupled in the functional P. 
Tbe latter may be formally written 

In the absence of toroidal effects, the functionals Y1.I, vanish for ~O~ca~ceI~i~~ 
I’ -- I differences. Hence, L.5 can be extremized for each mode 5 i~depe~de~t~y of the 
others. It is essential that those modes are found localized by magnetic shear near 
the resonant surface Y = Y,, where I + mq( !F[) = 0. This allows us to take into 
account the coupling between 1 and I’ components introduced by the toroidal 
effects by using a WKB scheme along 1 of the successive structures U!(Y- @P!), 
A,( !P-- ly,), equivalent to the so-called ballooning approximation, which is detailed 
in the following sections. 

III. THE STANDARD STRUCTURES U,(Y- 
THEIR FOURIER TRANSFORMS U~(~),~~~~) 

III.l. I-translating Invariance 

The coupling terms T,,,, in (24) reflect the variation exp (ill- I’) 0) of the equ& 
librium configuration and are effective for a few values of / I- 1’ / . At large 
successive surfaces Flu,, “u,, 1, ..“, are close together. If each 15 harmonic U,( 
A,( Y- Flu,) is localized near the corresponding resonant surface ‘P”= ul,, t 
tionals L&C which reflect the properties of the plasma in the ~cigbbourin~ of the 
surface Y,, weakly depends on I, at given II-i. In this section, we exploit that situa- 
tion at lowest order by assuming that the Y-distance 

between two adjacent resonant surfaces does not depend on I and the function& 
ZIXIr depend only on I’ - 1. 

The functional sP(8*, A”*, 0, A”) is then invariant under the transformation 8, 
2 + 8,, A”’ = ‘3( a, A”) defined by 
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This means that the operator z-c-( u, A) = c?9( I*, A”*, 0, A”)/d( o*, A”“) 
commutes with V. These two operators therefore exhibit a common set of eigen- 
functions, i.e., a physical eigenmode satisfying the equation 

X(U,!a)=O (26) 

may be written as an eigenvector of GF? associated with the eigenvalue exp(iG), 

(V,(~-‘V,),A,(Y/-Y/,))=(U(Y-‘Y,),A(Y’-Y,))expi16, (27) 

where 6 is a real constant and U(X), A(X) are standard functions localized near 
X= 0 which are handled in computations by their Fourier transforms, 

(U(X), 4X)) = s’,” g (U(K), A(K)) exp(iKW. (28) 

This situation of an infinite sequence of identical modes localized on each 
resonant surface is equivalent to the usual ballooning approximation (Appendix 1). 

111.2. Calculation of the Functionals L??~~,, 

Choosing a reference poloidal number I, associated with !P,,,(q( Y,) = - Z,/m) we 
obtain by substitution of (28) in (20) for each set of constant of motion p, H, 
and F, 

where WC 42) = e,(UW) -q(h) A(K)). 
Noting that 

and using the identity 

~expji(Z-Z0)(t)+6-Kd)}=~~~(K-(B+dd+2gn)) 
P 

(29) 

(30) 

(31) 

to perform the summations in I, I’, then integrating the 6 functions over K and K’, 
and finally taking into account that the sums over p allow to transform the &, 4; 
integrals over [IO, 27r] in integrals over [-co, + co], one may transform Eq. (29) 
into 



ELECTROMAGNETIC INSTABILITIES IN TOKAMAKS 

where 

CT(&) = d2 in the circulating domain 

6(&) = 27cE(qS,/2n)(E(x) is th e integer part of x) in the trapped domain and 
the following functions are defined for each set of p, H, !P as 

KC&) = 
&(b*) + Qd2) + 6 

d 

433) 

ae 

The quantity h,,,,(p, H, !P) mainly depends on $0 through the exponential 
dependence on (ly- Y,,)/d and the functions ~,,(q4~), &q42)j a(&,), A(@,) may be 
calculated at P = Y’,. In the circulating domain, the values of / /I,.,\~ are significant 
at P= Y,O for a set of n2 = I,, E, + 1, . . . . shifted by 1 for a displacement d in 
the trapped domain, CT(&) = 27cE(4,/27~), the relevant n, are 0, -I- 1, . . . . an 
is cd-periodic in Ifi. One may note the useful relation 

Using Fhe relation 

d,x d,p= (27~)~ m, 
dH dp dp 

I%1 ’ 

where the transformation (35) must be summed over the two possible signs of o2 
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for circulating particles, the integration over !P in Eq. (18) after substitution of (29) 
may be performed over a cell [0, 1 dl]. Note that the first integral in (10) becomes 

n,ef --s +Oz 271 de 

Ts 
- 44 we) www u*(w)) 

-m I4 
(36) 

with 

and a similar form may be found for the first integral in (9). 
The expression of YS,,, is 

(37) 

Of course, the integration over H must be performed for the two possible signs of 
v ,, for circulating particles. 

For the trapped particle contribution, the bounce and precession frequencies 
w2 and o3 do not depend on P. The integration over !P then imposes that 
6(4,) = a($;) and the double integral in the plane d2, 4; reduces to cells 271 x 27c 
along the diagonal d2 = d;, i.e., 

%es = -1 jj 
(27~)~m,dHdpF, cl-0% 

n2 trap. Iw,dl T,o-n,o,-mw,+k 

x Jo(a(Q;)) h*(h) exP(i(4d2) - 44;) - n2(d2 - 4211. (38) 

Considering only the term n2 = 0, p = 0 and assuming ii = O-which is a crude 
approximation-the trapped ion response obtained by J. Weiland and L. Chen [7] 
is recovered. On the contrary, for circulating particles, the quantities n202 + mw3 
depend on P through the magnetic shear: n202 + mo, = (n, +mq( 9)) w2 +a,. 
Alternative forms of the functionals ZSreS more convenient for computations are 
derived in the next section. 
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III.3. Alternative Expression of Td,,, 

It is useful to transform the resonant terms in (37) y using the relation 

1 
= --E 

w-nzw2-mw3+ie 
‘j+m daexp(i(o-n,o,-mtri,)o) 

0 

and summing over the indices n,, 

with 

Z(&;-42)=C Y(“‘-9:,‘2p”) exp {2ipz77] 
P 

eaviside function. These expressions can be explicitly given for bo%h 
types of trajectories. 

(if Circulating particles. Since 
- 

w--w3 o-mwd - ‘y, = s&-J+- 
02 02 d ’ 

(42) 

the integration over 9 imposes that only the term p = 0 remains in (40), (Al), and 

(27~)~ m, dH d,u F, CO - oh? 
j 02 1 T, lw,dl 

For a cylindrical equilibrium and H$ pB, the expression calculated by 
omanelli [6] within the framg: of a ballooning electrostatic (2 = 0) formalism 



260 GARBETET AL. 

is easily recovered from (43). The effect of the transverse guiding center motion 
appears through the function 

which in view of (34) verifies 

(ii) Trapped particles. We now have w3 = od and the integration over !P in 
(40) imposes that E (&/27c) = E(&/2rc). We finally obtain 

=%, = i ss 
(27~)~ m,dH dp F, w -o,* 

trapped I%1 T ,  lo,4 

(46) 

Again, the transverse guiding center motion is introduced by the function 
A’(&) =A(#,) +m(w&oJ & verifying (45). The formula (46) is similar to (43) 
except the term l/(exp { - 2i71(0 - modi w2 I)} - 1 tresulting from a geometric 
sum of phase components exp 2ipn((o - mw3)/o,) in the E distribution resonant 
when w=mw,+no,; n=O, fl, 12 ,.... The formula (46) is consistent with the 
current and charge responses given by G. Rewoldt, W. M. Tang, and M. S. Chance 
[S]. However, the resonant form (3X), which results directly from our basic frame 
(18), is only partially recovered in their work. It appears that this form is much 
more suitable for numerical computations, since the rapid oscillations of the 
integrand in (46) when H approaches zero (02 behaves like H) are avoided when 
one uses the expression (38). 

IV. WKB APPROACH 

The situation described in Section III corresponds to an infinite sequence of 
identical structures U,( Y - Y,), A,( !P-- !PJ localized on successive resonant 
surfaces Y = Yy,. In the realistic case of a radially inhomogeneous equilibrium, the 
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functionals 5& which appear in Eq. (24) depend slowly on i for given I - I’. The 
operators 

which link a structure 

to the neighbouring U,, i( !J- ul,, I), A,, ,( Y - ‘Pi+ 1 ), . ..) vary also slowly with I’. 
One may then expect that the characteristics of the functions U,(X), A,(X) 
experience a WKB type variation in 1, 

(u,(Y- “u,), A,(Y- YJ)=&(~P- Y,), J,(!J’- (471 

where the amplitudes A,, the normalized functions B,(!F- A,( v”- Y”,) and the 
phase derivatives 6,= aS,/al vary slowly with 1. We may a e A, and 6, real. In 
fact, Eq. (47) is applicable at all orders in l/(DS . Al), wher is the smallest gap 
between the possible 6, solutions and Al is the scale of variati 
functionals 5$, or operators x,l, for given 1’- I’. The condition 1 
the traditional requirement that the WKB solutions are not c 
equilibrium inhomogeneity effects. 

We may obtain an approximation of iI, 6, and e/,( 
substituting (47) in the functional, freezing the characteristics of the equiIibri~m at 
their values on the resonant surface y/,. This is exactly what has been done in 
Section III and the expressions (37) or (43), (46), changing E, in 1 and U, A in 0,; 
b, provide the value L( of per unit cell [Y,, !Pv/+ r], 

Extremalization of a given L, with respect to @, A? produces approximate 
profiles U,, A,, and 6, eigenvalues, as discussed in Section V. On the other hand, 
one may derive from the functional Ll interesting informations on the whole 
u, A”. We recall that, for a real frequency CO, the power which is transferred 
the mode to the particles is 20 Im(Y), i.e., 2w 2: Im(L,) per cell [!P[, !P,, 1 
will assume that Im(L,) is a perturbation in L,, so that we may write, for real 6,, 

where c~L,/%~ may be replaced by 8 Re(L,)/aG,. Extremalizatio~ with respect to A? 
then provides 
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i.e., the WKB relations giving 6, (real) and the variations of the real amplitudes A, 
are 

Re(L,(G,, 07p, 67, U,, A,)) =0 
(51) 

This last equation can be considered as a balance equation between the energy 
2~0 A: Im(L,) transferred from the mode to the particles per cell [ Yl, YyI+ i] and the 
energy flux -o(d(Re(L,))/i%,) A: ( averaged in each cell) carried by the mode 0, A” 
across the magnetic surfaces. There exists also a similar flux of momentum around 
the major axis in the ratio of the toroidal wave number m to the frequency o. 
Generally, the quantity 2m Im(L,) represents the momentum transferred per unit 
time from the mode to the particles in the cell [ Yy,, Yu,+,]. By expressing the 
balance between that force and the Lorentz force associated with the quasilinear 
flux of particles, the latter (for a given species at a given energy H) may be directly 
derived from the expressions of L,. 

V. NUMERICAL COMPUTATIONS 

V.l. Discretisation 

We have implemented in the code TORRID the exact expressions of the func- 
tional T(U*(K), A*(K), U(K), A(K)) per cell [Yu,, Y,,,] given by the formula 
(37) or (43), (46). That formula may be formally written 

9=l.l dKdK’ (U*(K), A*(K)) N(K, K’)(U(K’), A(K’)), (52) 

where N(K, K’ ) is a complex kernel depending analytically on the frequency w  and 
the phase shift 6. The expression (52) is valid only if the functions U( Y- Y,), 
A( Y - Y,) are localized in Y - Y[. This may be checked by a preliminary spatial 
WKB analysis U(Y- Y,), A(Y- Y,)-exp(i(K,(Y- Y[))> for large 1 Y- ul,l, 
ensuring that no solution with real K, exists. Then the Fourier functions U(K), 
A(K) of U( Y - Y,), A( Y - ul,) have no singularities in K. From the computational 
point of view, this allows to develop those functions over a set of squared integrable 
functions P,(K). Zero order finite elements appear suitable to insure both numeri- 
cal stability and proper accuracy. We write 

(U(K), A(K)) = 5 aJ’,W), 
n= -N 

(53) 

where the P,(K) are window functions in successive small intervals a over an inter- 
val (-AK, AK). The quantities l/a and l/AK reflect of course the largest and 
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smallest scale in Y of the functions U( Y - Yu,), A( - V,). The ratio hi= ft 
typically of order 100. Substitution of (53) in (52) yields the expression 

L,, = j/ dK dK’ P,,,(K) Nf K, M’ ) P,(K’ ). (55) 

Expressing that the functional (54) is extremum with respect to the a: lea 
the set of linear equations 

Note that a, reflects the 2 components U, A at given K= ncr, so that 
[2(2W+ l)]’ matrix elements are actually involved in (56). For given eq~~~ib~~~rn 

U, m, E,, 6, the eigenmodes U, A are derived by expressing the degeneracy of 
the matrix L,,. A first numerical problem is the computation of the matrix 
elements with the proper accuracy. A second problem is the investigation of the 
degeneracy of the matrix L,, when varying the plasma and mode parameters. 

V.2. Matrix Elements Computation and Investigation of Eige 

Each matrix element is a 4-d integral over #2r 4; wi 
amplitude proportional to the window thickness M, and 
motion H, p within the circulating and trapped domains. 

The main difhculty is that the integrand in H, p plane at a given ratio 
exhibits strongly oscillating features. While analytical i 
special cases (ultra circulating H% PI?) or trapped (N- 
standard varying meshes methods is unavoidable to co 
computational time on Cray X-MP is then typically 500 s for whole matrix L,,, 
- 100 <m, IZ < 100. The overall computation time is i 
matrix computation. 

Computational time can be saved in a general investigation sf eigenmo 
exploiting the fact that the matrix L,, depends linearly on some parame 
equilibrium such as the average density, the density and tern 

eing Aa and IV2 two such parameters, L,,, may be written 

L = L(O) + 2, L(l) f 2, Lc2) mn mn mn In,* I 

The three matrixes LEA, LEi, and L,, (2) allow a fast computation of the matrix 
E in the plane (A,, A,). The determination of critical (iI, &) and the corre- 
sp:nding U, A may then be performed. The numerical method is a standar 
routine which transforms the matrix L in a product T.U of triangular atrixes, the 
diagonal of U containing the successive maximal pivots. The last pivot n(j.!, ?.z) 

581:X7/2-2 
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reflects the smallest eigenvalue of the matrix L,, and cancels at degenerate points 
(A,, 1,). The corresponding eigenmode U, A may be derived by solving the 
triangular system 

C Umnan=O. 
m 

The process for finding (A,, A,) includes two steps: first building a map of 
the modulus 1 n(1,, &)I over a (A,, A,) grid, and then applying an iterative 
Newton-Raphson method near each significant dip. The two situations of a set of 
isolated degeneracy points (A,, 2,) or of continuum along a curve are encountered. 
In the latter case, a Newton method where Re(rc(A,, a,)) and Im(n(l,, 1,)) are 
replaced by their tangent values does not converge. A one-dimensional Newton 
method must then be used. 

V.3. Example of Application 

As an example, we show an investigation of the effect of coupling between 
harmonics 1, I’ for electrostatic modes driven unstable by the diamagnetism of 
circulating ions. We consider first a cylindrical equilibrium of concentric magnetic 
surfaces (which may then be labelled by their minor radius r, rather than by their 
poloidal flux Y, dY = - B,R dr) and have consequently 2$ = 0 for I# 1’. The 
electron response is assumed to be adiabatic and the equation dZ[JaU* =0 
(Eqs. (10) and (18)) yields the usual equation for the electric potential structure 
UC y- Yu,), 

O-wi” 
co-K,,v,, +ie JOCK, PC,) . U(!i- YJ=O, (58) 

where K,, = (l/R)(m + Z/q(Y)) is the parallel wave vector, the bracket indicates a 
Maxwellian average over parallel and perpendicular velocities u,, and vI, and J,. 
is a Bessel operator with 

K,p,,=i( -i-f-)‘+~]1i2~. 

Removing the ion Larmor radius effects by putting pCi= 0, a very simple case 
appears: Eq. (58) then imposes that U is localized at a Y value such that 

Y-Y, 2 ( > cog 
=- 

6i 20 (59) 

with 

(60) 
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and 6, = (q&o/u,) d, ui = Jm. This situation allows us to test the ability of the 
code to reproduce complex structures U( !J- Y,), through the system of Eqs. (56) 
acting on Fourier components U(K). The computed radial prohles are effectively 
localized around the Y value given by (59) within the expected width r~ I/IV deter- 
mined by the number Iv of window functions. The considered case exhibits a 
degeneracy in the plane I,, = CI$/CC), /2, = o*,/co, since al2 the solutions he along the 
line derived from (60). 

Taking now into account finite Larmor radius effects (p,, #O), Eq. (58) produces 
ionic modes in cylindrical geometry for given normalized parameters 6, and 
(i/v) pi(pi = Y~~~uJ’~~B~) by scanning over 1, = ozi/o, i,, = o&/w. For Im(o) of order 
of Be(o), the profiles we obtain (Fig. 1) fit well the nearly gaussian shape already 
found by R. E. Waltz, W. Pfeiffer, and D. Dominguez [9]. Marginal (Im(m) = 0) 
radial structures for relatively low values of vi = 3.,/L, are shown on Fig. 2. The 
mode then essentially consists of two propagative waves, symmetric with respect to 
the surface Y’= ‘Y,, each of those waves carrying energy from a region (A), where 
it gains energy (negative contribution to 2w %m(L?)), to a region (B), where it 
returns energy (positive contribution to 2w Im(L?)). The computed structure in the 
central region between (A) and (B) is consistent with a WK approach based on 
Eq. (58). The instability is limited by the fact that the variation of the dispersive 
properties of the plasma must ensure enough reflection on both ends of the wave 

omain of existence. Figure 3 shows the amplitude of the propagative component 
U, and the reflected past U- . 

Finally we consider the same type of convective mode in a realistic noncylindrical 

FIG. 1. Radial prolile U(ll/-,YI) of an unstable F-! mode in a cylindrical geometry (the soiid 2nd ?he 
dashed lines represent the real and imaginary parts of U): 6i=0.88(dY,‘:idr) pi, (I/r)p,= 1, TJTj=2, 
Im(w)/Re(u) =0.95, o~,,io = 11.36, w&‘w = 25.76, the Y unit is 5 (dY/Yldr) p8, and N= 70. 
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+ 

I- 

L- 

FIG. 2. Radial profile U(!?- Y’,) of a marginal qz mode in a cylindrical geometry. Energy is con- 
vected from region A to region B: 6, = 2 (dY’/‘ldr) pi, (I/r) pi = 0.1, T,/T, = 1, o;Jo = 13.8, wh/o = 45.5, 
the Y unit is 4 (dY/&) pa, and N =70. 

geometry. Due to the coupling between poloidal harmonics 1, I’, the harmonic I 
may drive energy from the harmonic I- 1, . . . . and transfer energy to the component 
1+ 1, .,. . This effect is expected to replace the reflection mechanism in the pure 
cylindrical case, for achieving the mode consistency. Figure 4 shows a computed 
profile which is purely propagative and corresponds to a large overlapping of 
harmonics. 

FIG. 3. Amplitudes of the component U, propagating away from the resonant surface Y = Y, (solid 
line) and the reflected part U- (dashed line). Same mode as on Fig. 2. 
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FIG. 4. Standard radial profile U( Y- Y,) of a marginal 4, mode about Y= Y, in a toroidal 
geometry: y( Y,) = 2, d = 6, = Z(dY/dr) pi, (l/r) p, = 0.1, TJT, = 1, O~J’W = 13.8, aft/w = 27. Same scale 
as on Fig. 2 (N= 70). the threshold v, is smaller by a factor 1.7. 

For IV< 100, the code actually needs a 900,000 word memory size on a CWAY 
X-MP and the storage of the three symmetric complex matrixes L(O), I,(‘), ~5’~’ 
requires 6 (2N+ 1)(4N + 3) words. The CPU matrix computation time is less than 
500 s. The inversion time is 0.4 s for N = 70 and about 100 inversions are necessary 
to find an eigenmode in a plane AI, A,. Consequently, far given 1, PYE, 0, 6 and 
magnetic geometry, the code provides routinely two cqui~~br~~rn parameters 
IV1 = (l/n,)(&,/a!P) and 2, = (1/Tj)(8ri/8Y) within 600 s CPU. 

CONCLUSION 

In order to investigate electromagnetic microinstabilities in takamaks, a numeri- 
cally tractable variational method, exploiting integrability of t 
charged particles in the equilibrium magnetic field, has bee 
described in detail in this work. The coupling of poloidal harmonics due to the 
taroidal effects is included within the frame of a ballooning farmahsm which 
appears as the lowest order of a WKB analysis with respect to the polo&al wave 
numbers. The formalism allows us to implement the exact circulating an 
particle response to the turbulent field in the actual tokamak geometry. Circulating 
and trapped particle contributions to the variational functional are written under 
various forms to facilitate numerical computations. The numerical code TBR 
exploiting those expressions has been built and checked successfully. It should be 
a convenient tool for systematic studies of the linear instabilities in tokamaks and 
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the associated quasilinear transport mechanisms. As an example, we have shown 
that the curvature effects lower the thresholds vi = d Log TJd Log IZ~ and delocalize 
the radial profiles of ionic modes. 

APPENDIX I 

In the usual ballooning representation [3], an eigenfunction f is looked for as a 
%-periodization of 

where A is a slowly varying function of 9. The function f can be developed in 
Fourier series of 9, 

f( F 9) = CfiC W exp(W, 

where the fi components are the Fourier transforms of the nonperiodic function f 
for integer values, 

Using mq( Y) = -I, - (!P- FY,)/d and the Fourier transform A(s) of A(%), fi is 
changed in 

and, finally, 

f(Y, %)=CA y ( > exp{i(l%+mq)} 
I 

which is equivalent to (7) and (27) with 6 = 0. 
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